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Abstract
We study the finite temperature free energy and fermion number for Dirac
fields in a one-dimensional spatial segment, under local boundary conditions,
compatible with the presence of a spectral asymmetry. We discuss in detail the
contribution of this part of the spectrum to the determinant. We evaluate the
finite temperature properties of the theory for arbitrary values of the chemical
potential.

PACS numbers: 11.10.Wx, 02.30.Sa

1. Introduction

When the Euclidean Dirac operator is considered on even-dimensional compact manifolds
with boundary, its domain can be determined through a family of local boundary conditions
which define a self-adjoint boundary problem [1] (the particular case of two-dimensional
manifolds was first studied in [2]). The whole family is characterized by a real parameter
θ , which can be interpreted as an analytic continuation of the well-known θ parameter in
gauge theories. These boundary conditions can be considered to be the natural counterpart in
Euclidean space of the well-known chiral bag boundary conditions.

One salient characteristic of these local boundary conditions is the generation of an
asymmetry in the spectrum of the Dirac operator. For the particular case of two-dimensional
product manifolds, such asymmetry was shown, in [3], to be determined by the asymmetry of
the boundary spectrum. For other recent work on chiral bag boundary conditions, see [4–6].

In a previous paper [7], we studied a theory of Dirac fields in one spatial dimension and
evaluated its finite temperature properties for two particular values of the parameter θ , and
for restricted ranges of the chemical potential µ, since our aim was to (partially) answer the
question posed in [8], as to whether the fermion number is modified by temperature in low
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dimensional bags. Here, we generalize such results to other values of µ. Such generalization
could be of interest in the study of boundary effects in low dimensional condensed matter
systems and also in the treatment of open string theories with a non-trivial twist (analytic
extension of µ) of the world sheet [9, 10].

In section 2, we determine the spectrum of the Euclidean Dirac operator at finite
temperature for θ = 0. With this spectrum at hand we perform, in section 3, the calculation
of the partition function via zeta function regularization for different ranges of the chemical
potential.

Section 4 is devoted to the evaluation of the free energy and the mean fermion number,
both at finite and zero temperature.

2. Spectrum of the Euclidean Dirac operator

In order to study the effect of temperature, we consider a two-dimensional Euclidean space,
with the metric (+, +). We take the Euclidean gamma matrices to be γ0 = σ1, γ1 = σ2. Thus,
the Euclidean action is

SE =
∫

d2x �̄(i∂/ − A/)�. (1)

The partition function is given by

log Z = log det(i∂/ − A/)BC. (2)

Here, BC stands for antiperiodic boundary conditions in the ‘time’ direction (0 � x0 � β,
with β = 1

T
) and, in the ‘space’ direction (0 � x1 � L),

1
2 (1 + γ0)�

⌋
0 = 0 1

2 (1 + γ0)�
⌋

L
= 0. (3)

We will follow [11] in introducing the chemical potential as an imaginary A0 = −iµ.
In order to evaluate the partition function in the zeta regularization approach, we first

determine the eigenfunctions, and the corresponding eigenvalues, of the Dirac operator

(i∂/ + iγ0µ)� = ω�. (4)

To satisfy antiperiodic boundary conditions in the x0 direction, we expand

�(x0, x1) =
∑

λ

eiλx0ψ(x1), (5)

with

λl = (2l + 1)
π

β
, l = −∞, . . . ,∞. (6)

After doing so, and writing ψ(x1) = (ϕ(x1)
χ(x1)

)
we have, for each l,

(−λ̃l + ∂1)χ = ωϕ (−λ̃l − ∂1)ϕ = ωχ, (7)

where

λ̃l = λl − iµ = (2l + 1)
π

β
− iµ. (8)

It is easy to see that, with the boundary condition in equation (3), no zero mode appears.
For ω �= 0 one has, from (7),

∂2
1 ϕ = −κ2ϕ χ = − 1

ω
(λ̃l + ∂1)ϕ, (9)

where κ2 = ω2 − λ̃2
l .
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For κ �= 0, one has for the eigenvalues

ωn,l = ±
√(nπ

L

)2
+ λ̃2

l , with n = 1, . . . ,∞, l = −∞, . . . ,∞. (10)

This part of the spectrum is symmetric. In the case κ = 0 one has a set of x1-independent
eigenfunctions, corresponding to

ωl = λ̃l . (11)

It is to be noted that ωl = −λ̃l are not eigenvalues.

3. Partition function

In order to obtain the partition function, as defined in equation (2), we must consider the
contributions to logZ coming from both types of eigenvalues (equations (10) and (11)),

�1 = − d

ds

⌋
s=0

ζ1(s), (12)

where

ζ1(s) = (1 + (−1)−s)

∞∑
n=1

l=−∞

[(nπ

αL

)2
+

(
(2l + 1)

π

αβ
− i

µ

α

)2
]− s

2

, (13)

and

�2 = − d

ds

⌋
s=0

ζ2(s), (14)

where

ζ2(s) =
∞∑

l=−∞

[
(2l + 1)

π

αβ
− i

µ

α

]−s

. (15)

As usual, α is a parameter with dimensions of mass, introduced to render the zeta function
dimensionless.

The analytic extension of ζ2 requires a careful selection of the cut in the ω-plane (for
details, see [7]). The result is

ζ2(s) =
(

2π

αβ

)−s
[
ζH

(
s,

1

2
− iµβ

2π

)
+

∞∑
l=0

[
−

(
l +

1

2

)
− i

µβ

2π

]−s
]

=
(

2π

βα

)−s [
ζH

(
s,

1

2
− iµβ

2π

)
+ eiπsign(µ)sζH

(
s,

1

2
+

iµβ

2π

)]
, (16)

where ζH (s, x) is the Hurwitz zeta function.
The analytic extension of ζ1 leads to a separate consideration of different µ-ranges,

determined by the energies of the zero-temperature problem [7]. We will perform the extension
in two of these ranges. The generalization to other ranges will become evident from these two
cases.
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3.1. |µ| < π
L

This is the range already studied by us. For details, see [7]. In this range, (13) can be written
in terms of its Mellin transform as

ζ1(s) = (1 + (−1)−s)

�
(

s
2

) ∫ ∞

0
dt t

s
2 −1

∞∑
n=1

l=−∞

exp

(
−t

[(nπ

αL

)2
+

(
(2l + 1)

π

αβ
− i

µ

α

)2
])

. (17)

This can also be written as

ζ1(s) = (1 + (−1)−s)

(
√

π)s�
(

s
2

) ∞∑
n=1

∫ ∞

0
dt t

s
2 −1 exp

(
−tπ

[( n

αL

)2
+

(
1

αβ
− iµ

απ

)2
])

×�3

(−2t

αβ

(
1

αβ
− iµ

απ

)
,

4t

(αβ)2

)
, (18)

where we have used the definition of the Jacobi theta function �3(z, x) = ∑∞
l=−∞ e−πxl2

e2πzl .
To proceed, we use the inversion formula for the Jacobi function,

�3(z, x) = 1√
x

e( πz2

x
)�3

(
z
ix , 1

x

)
, and perform the integration over t, thus getting

ζ1(s) = (1 + (−1)−s)β

2α−s(
√

π)s�( s
2 )

[
�

(
s − 1

2

)
π

1−s
2

L1−s
ζR(s − 1)

+ 4

(
βL

2

) s−1
2

∞∑
n,l=1

(−1)l
(

l

n

) s−1
2

cosh (µβl)K s−1
2

(
nlπβ

L

)]
, (19)

where ζR is the Riemann zeta function.
From (19) and (16) both contributions to logZ in this range of µ can be obtained. They

are given by

�1 = − βπ

12L
+

∞∑
n=1

log
(
1 + e− 2nπβ

L + 2 cosh (µβ) e− nπβ

L

)
(20)

and

�2 = −
[
ζ ′
H

(
0,

1

2
− iµβ

2π

)
+ ζ ′

H

(
0,

1

2
+

iµβ

2π

)
+ iπsign(µ)ζH

(
0,

1

2
+

iµβ

2π

)]

= log 2 + log cosh

(
µβ

2

)
− |µ|β

2
. (21)

Putting both pieces together, we finally have

logZ = − βπ

12L
+

∞∑
n=1

log
(
1 + e− 2nπβ

L + 2 cosh (µβ) e− nπβ

L

)
+ log 2 + log cosh

(
µβ

2

)
− |µ|β

2
.

(22)

3.2. π
L

< |µ| < 2π
L

Again, we have

ζ1(s) = (1 + (−1)−s)

�
(

s
2

) ∫ ∞

0
dt t

s
2 −1

∞∑
n=1

l=−∞

exp

(
−t

[(nπ

αL

)2
+

(
(2l + 1)

π

αβ
− i

µ

α

)2
])

. (23)
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However, in this range of µ, the contribution to the zeta function due to n = 1 must be
analytically extended in a different way. In fact, the expression cannot be written in terms of
a unique Mellin transform, since its real part is not always positive (note, in connection with
this that, for n = 1, equation (19) diverges). Instead, it can be written as a product of two
Mellin transforms

ζ n=1
1 (s) = (1 + (−1)−s)

α−s
[
�

(
s
2

)]2

∞∑
l=0

∫ ∞

0
dt t

s
2 −1 exp

(
−

[
(2l + 1)

π

β
− iµ + i

π

L

]
t

)

×
∫ ∞

0
dz z

s
2 −1 exp

(
−

[
(2l + 1)

π

β
− iµ − i

π

L

]
z

)
+ µ → −µ (24)

or, after changing variables according to t ′ = t − z; z′ = t + z, performing the integral over t ′,
and the sum over l

ζ n=1
1 (s) = (1 + (−1)−s)

√
π

2α−s�
(

s
2

) (
2
π

L

) 1−s
2

∫ ∞

0
dz z

s−1
2 J s−1

2

(π

L
z
) eiµz

sinh
(

πz
β

) + µ → −µ. (25)

Now, the integral in this expression diverges at z = 0. In order to isolate such divergence,
we add and subtract the first term in the series expansion of the Bessel function, thus getting
the following two pieces:

ζ n=1
1,(1)(s) = (1 + (−1)−s)

√
πs

4α−s�
(

s
2 + 1

) (
2
π

L

) 1−s
2

∫ ∞

0
dz z

s−1
2


J s−1

2

(π

L
z
)

−
(

πz
2L

) s−1
2

�
(

s+1
2

)



× eiµz

sinh
(

πz
β

) + µ → −µ, (26)

and

ζ n=1
1,(2)(s) = (1 + (−1)−s)

√
π

2sα−s�
(

s
2

)
�

(
s+1

2

) ∫ ∞

0
dz zs−1 eiµz

sinh
(

πz
β

) + µ → −µ. (27)

The contribution of equation (26) to the partition function can easily be evaluated by
noting that the factor multiplying s is finite at s = 0. Thus, one has

�n=1
1,(1) = −

∫ ∞

0
dz z−1

[
cos

(π

L
z
)

− 1
] eiµz

sinh
(

πz
β

) + µ → −µ, (28)

where we have used that J− 1
2

(
π
L
z
) =

√
2

π π
L

z
cos

(
π
L
z
)
. Now, in the term with µ → −µ, one

can change z → −z to obtain

�n=1
1,(1) = −

∫ ∞

−∞
dz z−1

[
cos

(π

L
z
)

− 1
] eiµz

sinh
(

πz
β

) . (29)

This last integral is easy to evaluate in the complex plane, by carefully taking into account the
sign of µ, as well as the fact that π

L
< |µ| in closing the integration path, to obtain

�n=1
1,(1) = −2

∞∑
l=1

[
(−1)l

l
cosh

(π

L
βl

)
e−|µ|βl +

(−1)l+1

l
e−|µ|βl

]
(30)

or, after summing the series

�n=1
1,(1) =

{
log

(
1 + e−2|µ|β + 2 cosh

(π

L
β
)

e−|µ|β
)

+ |µ|β − 2 log

(
2 cosh

(
µβ

2

))}
. (31)
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In order to get the contribution coming from (27), the integral can be evaluated for �s > 1,
which gives

ζ n=1
1,(2)(s) = (1 + (−1)−s)�(s)

√
π(αβ)s

(2π)s2s−1�
(

s
2

)
�

(
s+1

2

)
×

[
ζH

(
s,

1

2

(
1 − iµβ

π

))
+ ζH

(
s,

1

2

(
1 +

iµβ

π

))]
. (32)

Its contribution to the partition function can now be obtained by using that ζH

(
0, 1

2

(
1− iµβ

π

))
+

ζH

(
0, 1

2

(
1 + iµβ

π

) = 0 and the well-known value of − d
ds

⌋
s=0ζH (s, x) [12], to obtain

�n=1
1,(2) = 2 log

(
2 cosh

(
µβ

2

))
. (33)

Summing up the contributions in equations (21), (31) and (33), as well as the contribution
coming from n � 2, evaluated as in the previous subsection, one gets for the partition function

log Z =
{

log

(
2 cosh

(
µβ

2

))
+

|µ|β
2

+ log
(

1 + e−2|µ|β + 2 cosh
(π

L
β
)

e−|µ|β
)

+ β
π

L

(
− 1

12
− 1

)
+

∞∑
n=2

log
(
1 + e−2n π

L
β + 2 cosh (µβ) e−n π

L
β
)}

. (34)

At first sight, this result looks different from the one corresponding to |µ| < π
L

(equation (22)). However, it is easy to see that both expressions coincide, the only difference
being that the zero-temperature limit is explicitly isolated from finite-temperature corrections.
Similar calculations lead to the same conclusion for other ranges of µ. In those cases where
µ coincides exactly with one energy level, the result can be shown to be the same, but series
such as those in equations (19) and (30) are only conditionally convergent.

4. Free energy and fermion number

From the results in the previous section, the free energy can be readily obtained. It is given by

F = − 1

β
log Z = π

12L
− 1

β

[ ∞∑
n=1

log
(
1 + e− 2nπβ

L + 2 cosh (µβ) e− nπβ

L

)

+ log 2 + log cosh

(
µβ

2

)
− |µ|β

2

]
. (35)

It is continuous, in particular, at |µ| = k π
L
, k = 0, . . . ,∞. In the low-temperature limit

one has

F

(
kπ

L
< |µ| <

(k + 1)π

L

)
→β→∞

π

12L
+ k(k + 1)

π

2L
− k|µ|. (36)

The fermion number is obtained as

N = 1

β

∂ logZ
∂µ

. (37)

It is given by

N =
{ ∞∑

n=1

[
e− nπβ

L
+µβ

1 + e− nπβ

L
+µβ

− e− nπβ

L
−µβ

1 + e− nπβ

L
−µβ

]
+

1

2
tanh

(
µβ

2

)
− 1

2
sign(µ)

}
. (38)
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Note that it is not defined for µ = 0, where both lateral limits differ. This originates from
the indetermination of the phase of the determinant (equation (16)). From a physical point of
view, this reflects the fact that the sign of µ distinguishes particles from antiparticles.

Particularly interesting is the discontinuous behavior of N in the zero-temperature limit,
where µ is to be interpreted as a Fermi energy. In such a limit, one has

N

(
kπ

L
< |µ| <

(k + 1)π

L

)
→β→∞ −k sign(µ), (39)

which coincides with the derivative of equation (36), and is consistent with Fermi statistics.
For µ equal to an energy level, both lateral limits differ, and N

(|µ| = kπ
L

)
is undefined.
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